7.2 Similar Solids and Ratios

- Two solids are isometric if all corresponding angles and edges are congruent.
- Two solids are similar if all corresponding angles are congruent, and corresponding edges are proportional.
- Recall:
- If the ratio between 2 similar solids is $\mathrm{k}\left(\frac{s t}{s}=k\right)$
- Then the ratio of Areas is $\mathrm{k}^{2}\left(\frac{A^{\prime}}{A}=\left(\frac{s}{s}\right)^{2}=k^{2}\right)$
- And the ratio of Volumes is $\mathrm{k}^{3}\left(\frac{V^{\prime}}{V}=\left(\frac{s^{\prime}}{s}\right)^{3}=k^{3}\right)$

Steps to solve a problem:

- First step is: find k then find k^{2} and/or k^{3}
- to find a missing side:
- write the ratio of sides $=k$; then cross multiply
- to find a missing area:
- write the ratio of areas $=k^{2}$; then cross multiply
- to find a missing volume:
- write the ratio of volumes $=k^{3}$;then cross multiply
- Note: Keep the image always on top in your ratios

Ex 1: find the volume of the bigger

 prism$K=\frac{3}{2}$

$V=16 \mathrm{~cm}^{3}$

K (sides)	k^{2} (areas)	k^{3} (volumes)
$\frac{3}{2}$ (given)	$\frac{9}{4}$	$\frac{27}{8}$

!
$\frac{1}{1}$
V

Ex 2: Determine the area of the base of the small cylinder if the two cylinders are similar.

Practice:
p. 221 \# 1,2
p. 222 \# 10-15

Shown below are two similar right prisms, each with a rectangular base.
The lengths, in centimetres, of the sides of the base of the smaller prism can be represented by the monomial (x) and the binomial $(2 x+3)$ respectively. In this case, the volume of the smaller prism, in cm^{3}, is represented by the polynomial $\left(6 x^{3}+9 x^{2}\right)$.

The height of the larger prism is 96 cm . The total area of the larger prism is 64 times the area of the smaller prism.

